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Transonic Navier-Stokes Computations for an Oscillating Wing
Using Zonal Grids

Neal M. Chaderjian* and Guru P. Guruswamyt
NASA Ames Research Center, Moffett Field, California 94035

Modern jet transports and maneuvering tactical fighters operating in the transonic regime often give rise to
time-dependent fluid physics that interact with flexible structural components, e.g., vortical flow, shocks, and
separation. Efficient computational fluid dynamic methods are required to study such computationally intensive
problems. A numerical method is presented to address this problem. Time-dependent, compressible, Navier-
Stokes equations are used to simulate unsteady transonic flow about a three-dimensional rigid wing undergoing
a forced periodic motion in angle of attack. An efficient, implicit, diagonal algorithm is utilized because of its
low operation count per time step compared to other methods that solve systems of block matrix equations. The
formal time accuracy is theoretically addressed and numerically demonstrated by comparison of computational
results with experimental data. A zonal grid approach, capable of treating complex geometries, is presented
and its time accuracy is demonstrated by comparing two- and three-zone computations with a single grid
computation and experimental data.

Introduction

J ET transports and maneuvering tactical fighters tend to
operate in the transonic regime where the flowfield is

primarily subsonic with regions of embedded supersonic flow.
This often gives rise to complex fluid physics such as steady
and time-dependent vortical flow, shocks, and separation. It
has been observed that these phenomena interact with the
flexible components of an aircraft and can lead to sustained
aeroelastic oscillations and divergence.1"3 The ability to pre-
dict accurately the time-dependent flowfield and aeroelastic
response of an aircraft is essential to insure the integrity and
safety of the vehicle and can help extend the maneuvering
envelop to modern tactical fighters.

Computational fluid dynamics (CFD) can play an important
role in the design process by providing detailed flowfield and
structural displacement information. This will help reduce the
design cycle time and provide information that is comple-
mentary to wind-tunnel and flight-test data. At present, the
most advanced CFD codes for predicting the aeroelastic re-
sponse of wing/fuselage configurations are based on potential
flow theory.4 Even though these equations have a limited
range of applicability, they have been used because the more
complete Navier-Stokes equations require significantly more
computer memory and computer time. Navier-Stokes equa-
tions, when coupled with the governing aeroelastic equations,
can require two or more orders of magnitude of computer
time. However, recent advances in numerical algorithms and
computer technology make it possible to consider using these
equations in the research environment and eventually in the
design environment.5-6 The literature confirms this trend, as
several time-dependent, three-dimensional, Navier-Stokes
solutions for wing geometries have begun to emerge, e.g.,
Refs. 7 and 8, as well as aeroelastic computations, e.g., Refs.
9 and 10. It is our eventual goal to simulate the aeroelastic

Presented as Paper 90-0313 at the AIAA 28th Aerospace Sciences
Meeting, Reno, NV, Jan. 8-11, 1990; received March 26, 1990; re-
vision received April 9,1991; accepted for publication April 17,1991.
Copyright © 1991 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States under
Title 17, U.S. Code. The U.S. Government has a royalty-free license
to exercise all rights under the copyright claimed herein for Govern-
mental purposes. All other rights are reserved by the copyright owner.

* Research Scientist, Applied Computational Fluids Branch. Mem-
ber AIAA.

tResearch Scientist, Applied Computational Fluids Branch. As-
sociate Fellow AIAA.

response of a complete aircraft with the Navier-Stokes equa-
tions. However, as a first step toward this goal, we will address
some accuracy and efficiency issues regarding the use of an
Euler/Navier-Stokes code for predicting the time-dependent,
three-dimensional, flowfield about a rigid wing undergoing a
forced periodic motion in angle of attack.

In order to simulate time-dependent viscous flow about a
realistic aircraft geometry, it is important for a Navier-Stokes
code to be able to treat complex geometries, have an efficient
and robust numerical algorithm, and be time accurate. The
Transonic Navier-Stokes (TNS) code has been chosen as a
base code because of its success in predicting the steady tran-
sonic viscous flow about the complete F-16A fighter aircraft.11

This code uses a zonal grid approach for treating the geometric
complexity of the aircraft. The flowfield is subdivided into an
ensemble of simply shaped grids. Each of these grids can be
refined by adding clustered grid points as appropriate to ad-
equately capture viscous effects near all body surfaces and
wake regions. Flowfield coupling between zones is accom-
plished by overlapping adjacent zonal grids. Moreover, this
code uses an efficient and robust implicit approximate-fac-
torization algorithm. This algorithm, due to Pulliam and
Chaussee,12 is a diagonal version of the Beam-Warming
algorithm13 and uses central differencing. The operation count
per time step is therefore low compared to most upwind schemes
and methods requiring the solution of a system of block matrix
equations. However, the TNS code has only been used for
steady flow computations.

The Navier-Stokes Simulation (NSS) code is a new and
extended version of the TNS code for treating time-dependent
flows. It allows for a moving zonal grid system with time-
dependent coordinate transformation metrics. A Fourier-
analysis routine has also been included to facilitate compar-
ison of computed surface pressure, force, and moment coef-
ficients with experimental data.

The Pulliam-Chaussee diagonal algorithm is conservative
in space but not conservative in time. This can affect the shock
speed in a transonic computation. The form of this temporal
conservation error will be presented in a later section, as well
as ways to remove the error. The objective of this research
is to verify the time accuracy of the NSS code algorithm and
zonal boundary treatment by comparing computational results
with experimetnal data for transonic flow over an oscillating
three-dimensional wing with moving shocks.

In the following sections, a theoretical background is given
describing the governing equations, turbulence model, nu-
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merical algorithm, and formal time accuracy. This is followed
by a description of the zonal grid approach, grid generation,
boundary conditions, results, and concluding remarks.

Theoretical Background

Governing Equations
The compressible Reynolds-averaged Navier-Stokes equa-

tions are used to numerically simulate time-dependent viscous
flow about a wing with oscillating angle of attack. For the
high Reynolds number flows considered in this paper, the
thin-layer approximation is employed together with body-
fitted curvilinear coordinates. This improves the efficiency of
the numerical simulation and simplifies the implementation
of boundary conditions. Assuming a general coordinate trans-
formation from physical space (x,y,z) to computational space
(f,77,f) and that viscous terms are only important in the (-
coordinate direction, the governing equations can be ex-
pressed in the following strong conservation-law form:

drQ (1)
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In Eq. (1), the contravariant velocity components are defined
by
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and the pressure is related to the other flow variables by the
perfect gas law

p = (y - l)[e - \ p(u2 + v2 4- w2)]

The transformation metrics are defined as
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and the coordinate-tranformation Jacobian by
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Turbulence Model
Fluid turbulence is modeled by the Baldwin-Lomax alge-

braic eddy viscosity model.14 This isotropic model is used
primarily because it is computationally efficient. All viscous
computations presented in this paper assume fully turbulent
flow at the leading edge of the wing, i.e., transitional effects
are ignored. This approximation is consistent with the high
Reynolds number assumption.

Numerical Algorithm
An implicit approximate-factorization diagonal algorithm

is used in the NSS code to integrate Eq. (1). This algorithm
is based on the Beam-Warming algorithm13:

(/ 4 hSfA - hDt\€Y(I + hd^B - hD^Y

(6)
where

Rn = - DeQ)"

and

- Q"
In Eq. (6), the superscript n corresponds to the current time
level t" and n 4 1 to the new time level r^ 4 Ar. Also, A, B,
C, and M are the Jacobian matrices of E, F, G, and 5, re-
spectively. The numerical metrics are evaluated so that uni-
form flow is an exact solution of the steady finite difference
equation (see Ref. 15). The Beam- Warming algorithm is sec-
ond-order accurate in time when h = 1/2 Ai (trapezoidal rule)
and first-order accurate in time when h = At (Euler implicit).
The spatial operators use central differencing throughout, so
fourth-order explicit De and second-order implicit Di numer-
ical dissipation terms are added to damp high frequency er-
rors. One drawback to this method, however, is the required
solution of a block tridiagonal system of equations, which is
computationally costly. For more details of this algorithm,
see Pulliam and Steger.16

In order to reduce the overall execution time of the NSS
code, a more efficient diagonal form of the Beam- Warming
algorithm is used. This algorithm, due to Pulliam and Chaus-
see,12 given is by

(PY(l 4 (7)

where A^ is a diagonal matrix consisting of the eigenvalues
of A, and so on. Note that the viscous terms are treated
explicitly. The right side of Eq. (7) is identical to the right
side of Eq. (6). This algorithm uses both explicit and implicit
fourth-order dissipation and only requires the solution of sca-
lar pentadiagonal equations. This results in a lower operation
count per time step and, hence, a reduced execution time per
solution. Further details of this algorithm, including a de-
scription of the TA, N, and P matrices, are given in Refs. 12
and 17.

When a steady-state solution is desired, the rate of con-
vergence can be greatly improved by using the spatially vary-
ing time step described by Srinivasan et al.18 and is given by

I 4 (8)
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where Af0 is a user specified constant. Flores,19 using the
diagonal algorithm with variable time step, reported conver-
gence rates 40 times those obtained using the Beam- Warming
algorithm with constant time step. A constant time step is
used for time-accurate computations.

All of the computations reported here use the implicit di-
agonal algorithm. In its present coded form (NSS code), the
implicit operator only requires 70% more computer time per
time step than the explicit operator. Yet the implicit scheme
has been used with a maximum Courant number of about
900. Therefore, this algorithm is far more efficient (overall
computer time) than its explicit counterpart. However, due
to its diagonal form, this algorithm is first-order^ accurate in
time and temporally nonconservative. These two issues are
addressed in the next section and in the Results section.

Time Accuracy
The strong conservation-law form of the governing equa-

tions, Eq. 1, when properly differenced, conserves numerical
fluxes across flow discontinuities. These so called weak so-
lutions, i.e., piece wise continuous solutions, satisfy the proper
integral relations irrespective of the grid spacing or time step.
If a nonconservative form is used, the shock strength, posi-
tion, and wave speed will be dependent on the grid spacing
and time step.

Although the diagonal algorithm, Eq. (7), is conservative
in space, it is not conservative in time. Therefore, time-
accurate computations involving shocks can be questionable.
However, since the explicit side is differenced conservatively,
one might expect the temporal error introduced in the implicit
operator to be nominal for a variety of applications with mov-
ing shocks. This will be demonstrated computationally in the
Results section.

This section will address the form of the conservation error
and the formal time accuracy of the algorithm. Two ap-
proaches for removing this error will also be presented in the
event that temporal conservation errors prove to be important
for a specific application.

The temporal conservation error of the diagonal algorithm
can be found by going back to its derivation from the Beam-
Warming algorithm. Replacing the Jacobian matrices of Eq.
(6) with

B =

C =
and dropping the implicit viscous terms gives

x (TcTcl + = R"
(9)

In Eq. (9), A^ is a diagonal matrix whose elements are the
eigenvalues of A and TA is the matrix whose columns are the
eigenvectors of A . Similar terms apply for the B and C mat-
rices. Spatial finite difference operators have been replaced
by differential operators to avoid unnecessary details that do
not affect the analysis. Application of the chain rule results
in

and collecting terms give the following form for the Beam-
Warming algorithm:

hDt

+ hD^Y x (/>)"(/ + H

where
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The Beam-Warming algorithm can therefore be expressed as
the diagonal algorithm with an additional term. This extra
term e" corresponds to the temporal conservation error of the
diagonal algorithm. Now,

dOn
A(> = Qn + l - Q» = -Z- fa .

so that

e" ~ 0(M) (12)

The diagonal algorithm is formally first-order accurate in time,
even if trapezoidal rule is used. (This algorithm is also limited
to first-order time accuracy due to the explicit treatment of
the viscous terms.) This error e" can be important if the shock
strength and speed become too large for a given time step.
However, this error can be controlled by lowering the time
step for a given grid. This provides a method for checking if
this error is important for a specific application. We also
remark that the time step used in Navier-Stokes computations
are generally small because of stability considerations, hence
the temporal conservation error should be small for a large
class of applications.

There is another way of showing that the conservation error
vanishes with decreasing time step. As the time step h — > 0,
the dominant term in the implicit operator (see Eq. 7) is the
identity matrix. This method approaches the Euler explicit
algorithm for very small time steps, which is fully conserva-
tive.

Another method for removing the temporal conservation
error is to use a Newton iteration method described by Chak-
ravarthy.20 The diagonal algorithm then has the form

(TAy(i
(Py(i
= -(& - Qn) (13)

= R" (10)

In this expression, AQ1' -> 0 and Q -> Qn + l as / becomes
large. This usually requires only a few subiterations to con-
verge to the new time level. This approach not only removes
the conservation error, but also removes the approximate-
factorization error and makes the scheme fully implicit. This
approach, however, can significantly increase the computa-
tional time of the code.

Zonal Approach
Generating a single grid about a complex geometric shape,

e.g., a fighter aircraft, with appropriate viscous clustering near
all body surfaces and wakes can be a formidable (if not im-
possible) task. This difficulty can be overcome by adopting a
zonal grid approach. The NSS code uses a zonal grid proce-
dure that subdivides the flowfield about a complex geometry
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Fig. 1 Perspective view of a C-H-mesh grid for a NACA 64A010
rectangular wing.

Fig. 2 Symmetry plane view of a two-zone C-H-mesh grid for a NACA
64A010 rectangular wing. One cell overlap between zones is shaded.

Fig. 3 Symmetry plane view of a three-zone C-H-mesh grid for a
NACA 64A010 rectangular wing. One cell overlap between zones is
shaded.

into an ensemble of simple geometric shapes. Adjacent zones
overlap with one another, typically by one or two grid cells,
to couple the flowfields between zones. These zones are con-
structed from a coarse global grid, and so they have a common
interface surface. Each zonal grid is then clustered and refined
with additional grid points as appropriate to accurately cap-
ture the pertinent flow physics. This procedure ensures that
at an interface surface, the grid points of the coarser grid are
coincident with grid points of the finer grid. Flow variable
information is transferred from the finer grid to the coarser
grid by direct injection. This step is fully conservative. Flow
variable information is transferred from the coarser grid to
the finer grid by interpolation along grid lines. This step is
not conservative. When conservation between zones is im-
portant, e.g., when a shock passes through a zonal boundary,
both zones are required to have identical grid points at the
interface. This will insure complete flow conservation across
the zonal boundary.

The flowfield is advanced to a new time level one zone at
a time. The most recent data available at a zonal interface
are used. Therefore, some zonal boundaries are updated ex-
plicitly, whereas others are updated implicitly. Any effects
related to the explicit treatment of some zonal boundaries
will vanish as the time step is decreased. A comparison be-
tween single, two-, and three-zone flow computations is given
in the Results section. For more details of the zonal grid
procedure and interface boundary treatment see Flores et al.21

Grid Generation
All computations presented in this paper use a C-H grid

topology. A perspective view of a medium density grid is
shown in Fig. 1. In particular, the surface geometry and part
of the symmetry plane grid are highlighted. This grid consists
of 151 x 39 x 39 grid points (about 230,000). An additional
plane has been added inboard of the symmetry plane to fa-
cilitate the symmetry plane boundary conditions.

The grid shown in Fig. 1 was constructed in the following
manner. First, a surface grid for the wing was generated with
the S3D code.22 Additional grid clustering was provided near
the wing nose and shocks. Then, a three-dimensional grid was
created with 3DGRAPE,23 an elliptic grid generation pro-
gram, with normal spacing to the wing surface appropriate
for inviscid computations. Finally, viscous clustering was ob-
tained by redistributing grid points along coordinate lines nor-
mal to the body with a clustering function described by Vi-
nokur.24 This one-dimensional stretching function provides a
distribution of points that minimize the truncation error of a
finite difference code.

A two-zone grid was also constructed by splitting the single-
zone grid, see Fig. 1, in the £ direction (body normal). A
symmetry plane view is shown in Fig. 2 with the shaded region
indicating the one cell overlap between zones. Zone 1 is ad-
jacent to the wing surface and zone 2 extends from zone 1 to
the far field, about six chord lengths away. The grid points
at the zone 1 and zone 2 interfaces match up exactly. This
was done in order to study the effect of the zonal boundary
treatment on time accuracy without the additional compli-
cation of flow variable interpolation at zonal interfaces.

A three-zone grid was constructed from the two-zone grid
by splitting zone 2 in the £ direction, see Fig. 3. The third
zone is the outermost zone connecting zone 2 to the far field.
Notice that every other grid point in the f direction (stream-
wise) has been removed. This was done in order to demon-
strate the capability of the NSS code to test grid interfaces
that do not have identical grid points.

Boundary Conditions
The NSS code solves the Euler or Navier-Stokes equations

depending on the specific application. For inviscid flow, flow
tangency is imposed on the wing surface while density and
pressure are found by extrapolation. The total energy per unit
volume is then computed from the perfect gas law. The same
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boundary conditions apply for viscous flow except the no-slip
condition replaces flow tangency on the wing surface. Uni-
form flow is imposed at the far field, and zero gradient con-
ditions are used at the outflow boundaries. Boundary values
along the C cut (downwind of the wing trailing edge and
outboard of the wingtip) are obtained by averaging flow var-
iables across the cut. Flow symmetry is obtained by reflecting
the flow variables about the symmetry plane in an explicit
manner.

The zonal interface boundary conditions have already been
described in the Zonal Approach section.

Results
Wind-Tunnel Model

All flow computations presented in this section correspond
to a rectangular half-wing used in an AGARD wind-tunnel
experiment described by Mabey et al.25 The wing model was
mounted on a fuselage-like body to displace it slightly from
the wind-tunnel wall and its boundary layer. No experimental
data was taken at the wind-tunnel wall (wing symmetry plane).
The wing's cross section consists of a NACA 64A010 airfoil
whose thickness/chord ratio has been modified to 10.6%. The
wing has a complete aspect ratio = 4.0. The experiment was
conducted in the Royal Aeronautical Establishment 8- x 8-
ft tunnel with closed walls. (The model was originally designed
for a smaller tunnel that was not available when the experi-
ment was conducted.) Various C-H grids were generated for
this wing, see for example, Fig. 1. No attempt was made to
model the wind-tunnel test section.

Steady Flow Computations
Steady-state flow computations with different grid densities

are used to study their effect on the spatial accuracy of the
NSS code. The three grids that are used are 1) a coarse grid
(101 x 39 x 39), 2) a medium grid (151 x 39 x 39), and
3) a fine grid (233 x 39 x 39). Each grid has the same grid
point distribution in the spanwise and body-normal directions
(77 and g directions). The streamwise distribution of points (£
direction) downwind of the wing trailing edge are also iden-
tical for all three grids (17 grid cells to the far field). However,
each grid has 50% more points on the wing surface (in the
streamwise direction) than its previous coarser grid. Grid points
are clustered near the wing leading edge and shock locations
to improve the flowfield resolution on each grid. The grid
spacing in the viscous direction is Af = 5.0 x 10 ~6 chords.

Figure 4 shows a comparison between steady Navier-Stokes
pressure coefficients Cp computed on the three grids just de-
scribed with experimental values at 17 = 50, 77, and 94%
semispan locations. These computations correspond to a
freestream Mach number Mx = 0.80, angle of attack a =
0.0 deg, and a freestream Reynolds number based on the
wing root chord Re = 2.4 x 106. At 17 = 50%, Fig. 4a, the
computed pressure coefficients compare well with each other
and the experimental data, with the exception that the coarse
grid shock is slightly smeared. The suction peaks are also
slightly underpredicted, presumedly due to wind-tunnel wall
effects. All three grids have good Cp comparisons with each
other and experiment at 17 = 77%. At 17 = 94%, computa-
tions with all three grids are in good agreement with each
other, but their suction peaks differ somewhat from the ex-
perimental value. This is probably due to the use of a rounded
wingtip in the computation vs a blunt (flat) tip in the wind-
tunnel model. Overall, the medium and fine grids give the
best Cp comparisons with the experiment and do not differ
noticeably from each other. Therefore, the medium grid den-
sity (about 230,000 grid points) is used for the remainder of
the viscous computations that are presented.

Unsteady Flow Computations
Time-accurate Euler and Navier-Stokes computations for

a rigid wind with oscillating angle of attack are now presented.

A Exp (Mabey et al.)
- Coarse grid (101 x 39 x 39)

- Medium grid (151 x 39 x 39)
- Fine grid (233 x 39 x 39)

'A A A
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Fig. 4 Comparison of steady Navier-Stokes pressure coefficients
(computed with different grid sizes) and experiment—Mx = 0.80,
a = 0.0 deg, Re = 2.4 x 106: a) 50% semispan; b) 77% semispan;
c) 94% semispan.

Unless otherwise noted, the freestream Mach number is M^
= 0.80 and the Reynolds number based on wing chord is Re
= 2.4 x 106. The angle of attack varies periodically according
to

where the amplitude is amax = 1.0 deg, the reduced frequency
is k = 0.27, and t is a nondimensional time based on wing
chord and the freestream speed of sound. The reduced fre-
quency is defined by k = a)C/Ux, where to is the circular
frequency (rad/s), c the wing chord length, and Ux the free-
stream velocity. The computational grid undergoes a rigid
body rotation according to the angle-of-attack formula. Real
and imaginary unsteady pressure coefficients are used to com-
pare computational and experimental results. These in-phase
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Fig. 5 Comparison of Euler pressure coefficients with different computational time steps and experiment—Mx = 0.80, amax = 1.0 deg, k =
0.27, a(t) = -amaxsin(Mxkt): a) 50% semispan; b) 17% semispan; c) 94% semis pan.

and out-of-phase pressures correspond to the time-dependent
Fourier coefficients normalized by amax (rad).

The time steps used in Navier-Stokes computations are usu-
ally determined by stability considerations rather than time
accuracy. Therefore, the Euler equations are used to deter-
mine the time-step requirement for time accuracy with the
first-order accurate diagonal algorithm. For these in viscid
computations, the medium density viscous grid in Fig. 1 is
unclustered by redistributing 21 grid points along coordinate
lines normal to the wing surface. The inviscid and viscous
grids have identical spacing in the spanwise and streamwise
directions. Figure 5 compare computed real and imaginary
pressures for three different time steps with experimental data
at three semispan locations. These time steps, beginning from
the largest to the smallest, are 360, 720, and 1080 time steps/
cycle, respectively. Pressure coefficients computed with the
medium and smallest time steps are virtually indistinguishable
from one another. However, significant differences between

the largest time step (360 steps/cycle) and the smaller time
steps can be noted, especially at 17 = 77 and 94%. Therefore,
720 time steps/cycle is the largest usable time step for time
accuracy.

The real and imaginary pressure coefficients for the Euler
equations, Navier-Stokes equations, and experimental data
are compared in Fig. 6. These pressures correspond to the
same freestream conditions and reduced frequency in Fig. 5.
At 50% semispan location, the real Cp shock position and
strength computed by the Navier Stokes equations are in good
agreement with the experiment. Reducing the time step in
half or using a two-step Newton subiteration has no perceiv-
able effect on any of the pressure coefficients. This indicates
that the temporal conservation error is negligible for this tran-
sonic-flow example. It is evident from this figure that the
shock moves about 25% of a chord length during a complete
cycle. This provides a good test for the time accuracy of the
diagonal algorithm. The Euler equations, on the other hand,
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Fig. 6 Comparison of Euler pressure coefficients with Navier Stokes and experiment—Mx = 0.80, Re = 2.4 x 106, amax = 1.0 deg, k = 0.27,
a(0 = - crmaxsin(M xkt): a) 50% semis pan; b) 77% semispan; c) 94% semispan.

predict a much stronger shock with a slightly downwind po-
sition than the experiment and the Navier-Stokes equations.
Even for this relatively easy case that does not have any
significant separation, the Euler equations would predict the
wrong wave drag. The drop in pressure before the shock is
not predicted very well by either the Euler or Navier-Stokes
equations. This is attributed to inadequate grid resolution.
Although the clustered grid gave good shock resolution for
the steady-state case, there is inadequate grid resolution in
the shock excursion region. With hindsight, it is obvious that
time-dependent flows involving moving shocks require greater
grid resolution than steady-state flows. This can be accom-
plished by adding more grid points in the shock excursion
region or using a solution adaptive technique. The latter would
be more efficient.

The real and imaginary pressure coefficients computed by
the Euler and Navier-Stokes equations compare well with
each other and the experimental data for 17 = 77 and 94%
semispan locations. The time step used in the Navier-Stokes

computations at Af = 0.02, or 1400 steps/cycle. Although this
time step was chosen to maintain code stability, it is only one
half of the time step required for time accuracy in the Euler
computations. This is very encouraging, especially since the
viscous grid spacing normal to the wing was two orders of
magnitude smaller than the Euler grid spacing. This indicates
the robustness of the diagonal algorithm.

In order to verify the time accuracy of the zonal boundary
conditions, the single grid, shown in Fig. 1, is split into two
zones, shown in Fig. 2. The first zone is close to the wing
surface, whereas the second zone extends from the first zone
to the far field. The Navier-Stokes equations are solved in
the first zone and the Euler equations are solved in the second
zone. The zones overlap by one grid cell as indicated by the
shaded region in Fig. 2. The interface surfaces between the
zones have identical grid points. The zonal overlap position
was determined as the closest inviscid position, i.e., where
the turbulent eddy viscosity is zero. The close proximity of
the zonal interface to the wing surface and leading edge pro-
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Fig. 7 Comparison of pressure coefficients for one-, two-, and three-zone Navier-Stokes computations with experiment—Mx = 0.80, Re = 2.4
x 106, amax = 1.0 deg, k = 0.27, a(0 = -amaxsin(AOO: a) 50% semispan; b) 77% semispan; c) 94% semispan.

vides an extreme test for time accuracy of the zonal boundary
condition treatment. A three-zone grid, shown in Fig. 3, is
also used to demonstrate the capability of the NSS code to
treat zonal interfaces in which all grid points do not coincide.
Zone 3, the outer grid, has every other grid point removed
in the streamwise direction. The Navier-Stokes equations are
applied in zone 1, near the body, and the Euler equations in
the other two zones, away from the body.

Figure 7 compares the real and imaginary pressure coeffi-
cients for the single-, two-, and three-zone Navier-Stokes
computations with the experimental data. The single-zone
computation applied the Navier-Stokes equations and Euler
equations in the same region as the zonal cases. Once again,
the time step used for these viscous computations was Af =
0.02. Overall, the comparison of the single- and two-zone
computations are very close. Slight differences can be noted
in the imaginary pressure coefficients. Reducing the time step
in half does not alter the results. This indicates that these
slight differences are not due to the partially explicit zonal

boundary conditions. These differences are more likely due
to differences in numerical dissipation. Although the diagonal
algorithm uses fourth-order dissipation, it must drop to second
order near grid boundaries. This means that the single-zone
computation uses fourth-order dissipation in the zonal overlap
region, whereas the two-zone computation uses second-order
dissipation there. The close proximity of the zonal boundary
to the wing surface and leading edge can easily account for
these differences. Note that both solutions compare well with
the experimental data. The real and imaginary Cp for the
three-zone computation differs only slightly from the two-
zone computation at the 50% semispan location. They are
virtually identical at the other two semispan locations. These
slight differences are most likely due to the different trun-
cation errors of the zonal grid systems. Recall that zone 3, of
the three-zone system, is twice as coarse as zone 2, of the
two-zone system (see Figs. 2 and 3). Overall, the zonal grid
approach is capable of simulating time-dependent flow with
a moving grid system.
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Fig. 8 Convergence history of steady and unsteady three-zone Navier-
Stokes computation—Mx = 0.80, Re = 2.4 x IO6, amax = 2.0 deg,
k = 0.27, a(t) = -a

Fig. 9 Instantaneous pressure coefficient contours at the symmetry
plane near amax. Two-zone Navier-Stokes computations with Mx =
0.80, Re = 2.4 x 106, omax = 2.0 deg, k = 0.27, a(t) =

Figure 8 shows the convergence history of the three-zone
computation. A steady solution was first obtained for the
mean angle of attack (a = 0.0 deg). A reduction of the L2
norm of the residual by four orders of magnitude was obtained
in 1200 time steps. A variable time step was used, according
to Eq. (8), to accelerate the rate of convergence. The steady
solution was then used as a starting point for the time-accurate
oscillating wing case. The flow was completely periodic in the
second cycle. This was verified by computing a third cycle
and comparing unsteady pressure coefficients. When oper-
ating in steady-state mode, the NSS code requires about 14
/i-s/grid point/time step on a Cray Y-MP supercomputer. When
operating in a time-accurate mode, with a forced periodic grid
motion, it requires about 17 /x-s/grid point/time step. Overall,
a complete time-accurate computation for the present ex-
ample requires about 4 h of Cray Y-MP time. This includes
the steady solution and two cycles of forced periodic motion.

A final example of a time-accurate zonal computation is
shown in Fig. 9. The same freestream conditions and grids of
the previous two-zone example are used, except now amax =
2.0 deg. Although experimental data is not available for this
case, the stronger shock provides a qualitative check of the
zonal boundary treatment. Figure 9 indicates instantaneous
pressure coefficient contours when the upper surface shock
is its strongest. The zonal overlap region is also indicated in
the figure. Notice that the Cp contours are extremely smooth
across the zonal boundaries, even near the shock and the wing
leading edge. This shows that there is no significant flow
disturbances introduced by the zonal boundary conditions.

Conclusions
The zonal, steady-state, Transonic Navier-Stokes code has

been extended to treat unsteady flows. This new Navier-Stokes
Simulation code has the capability of treating a moving zonal
grid system. The Pulliam-Chaussee diagonal algorithm has
been shown to be an efficient and robust time-dependent
algorithm. The NSS code requires approximately 17 ^t-s/grid
point/time step on a Cray Y-MP supercomputer for a time-
dependent flow with a forced periodic grid motion. A typical
time-accurate result for 230,000 grid points requires about 4
h of computer time. Although this algorithm is conservative
in space, it has a temporal conservation error 0(Af). Since
Navier-Stokes algorithms require small time steps for nu-
merical stability, this error should be small for a large class
of transonic applications.

The NSS code has been used to simulate unsteady transonic
viscous flow about a three-dimensional rectangular wing with
oscillating angle of attack. Computed real and imaginary pres-
sure coefficients compared well with the experimental values
and demonstrates the time accuracy of the diagonal algorithm.
The temporal conservation error was shown to have no no-
ticeable effect on the speed, strength, and position of the
shock wave (for the present computations) through reduction
of the time step and application of a Newton-iteration pro-
cedure. Two- and three-zone transonic computations for the
oscillating wing compared well with the single-grid compu-
tation and the experimental data. This demonstrates the time-
accurate capability of the zonal interface procedure. The zonal
grid approach provides a way of simulating time-dependent
flow about a complete aircraft with the Navier-Stokes equa-
tions.
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